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 Chapter Two 

 

The Transient Circuits 

 RL Circuits 

 RC Circuits 

 RLC Circuits 

The analysis of circuits containing inductors and/or capacitors is dependent upon the formulation 

and solution of the Integra differential equations that characterize the circuits. The solution of the 

differential equation represents a response of the circuit, and it is known by many names:  

 The source-free response may be called the natural response, the transient response, the 

free response, or the complementary function, but because of its more descriptive nature, 

we will most often call it the natural response. 

 When we consider independent sources acting on a circuit, part of the response will 

resemble the nature of the particular source (or forcing function) used; this part of the 

response, called the particular solution, the steady-state response, or the forced response.  

 In other words, the complete response is the sum of the natural response and the forced 

response.  

We will consider several different methods of solving these differential equations. The 

mathematical manipulation, however, is not circuit analysis. 

2.1 RL Circuit: 

We begin our study of transient analysis by considering the simple series RL circuit shown in 

Fig. 2.1. Let us designate the time-varying current as i (t); we will represent the value of i (t) at t 

= 0 as I0; in other words, i (0) = I0.We therefore have 

 

Fig. 2.1 A series RL circuit for which i(t) is to be determined, subject to the initial condition that i(0) = I0. 
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Our goal is an expression for i(t) which satisfies this equation and also has the value I0 at t = 0. 

The solution may be obtained by several different methods. 

One very direct method of solving a differential equation consists of writing the equation in such 

a way that the variables are separated, and then integrating each side of the equation. The variables 

in Eq. [1] are i and t, and it is apparent that the equation may be multiplied by dt, divided by i, 

and arranged with the variables separated: 

 

After a little manipulation, we find that the current i(t) is given by 

 

We check our solution by first showing that substitution of Eq. [3] in Eq. [1] yields the identity 0 

= 0, and then showing that substitution of t = 0 in Eq. [3] produces i (0) = I0. Both steps are 

necessary; the solution must satisfy the differential equation which characterizes the circuit, and 

it must also satisfy the initial condition. 

Let us now consider the nature of the response in the series RL circuit. We have found that the 

inductor current is represented by 

ⅈ(𝑡) = 𝐼0𝑒−
𝑅
𝐿𝑡

 

At t = 0, the current has value I0, but as time increases, the current decreases and approaches 

zero. The shape of this decaying exponential is seen by the plot of i(t)/I0 versus t shown in Fig. 

2.2. 

 

Fig. 2.2: The plot of i(t)/I0 versus t. 
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Where 𝝉 =
𝑳

𝑹
 

The last equation become  

 

Example 2.1: Determine both i1 and iL in the circuit shown in Fig. 2.6a for t > 0. 

 

Fig. 2.3 

Solution: 

After t = 0, when the voltage source is disconnected as shown in Fig. 2.3b, we easily calculate 

an equivalent inductance, 

Leq = 2 × 3/(2 + 3) + 1 = 2.2 mH 

an equivalent resistance, in series with the equivalent inductance, 

Req = 90(60 + 120)/(90 + 180) + 50 = 110 Ω 

and the time constant, 

τ = Leq/Req = 2.2 × 10−3/110 = 20 μs 

Thus, the form of the natural response is Ke−50,000t, where K is an unknown constant. 

Considering the circuit just prior to the switch opening (t = 0−), iL = 18/50 A. Since iL (0+) = 

iL(0-), we know that iL = 18/50 A or 360 mA at t = 0+ and so 

ⅈ𝐿 =  {
360 𝑚𝐴                      𝑡 < 0
360e−50,000𝑡  𝑚𝐴      𝑡 ≥ 0

 

There is no restriction on i1 changing instantaneously at t = 0, so its value at t = 0− (18/90 A or 

200 mA) is not relevant to finding i1 for t > 0. Instead, we must find i1(0
+) through our 

knowledge of iL(0+). 
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Using current division,  

i1(0
+) = −iL(0+)(120 + 60)/(120 + 60 + 90) = −240 mA 

Hence, 

ⅈ1 =  {
200 𝑚𝐴                          𝑡 < 0
−240e−50,000𝑡  𝑚𝐴      𝑡 ≥ 0

 

 

H.W.: At t = 0.15 s in the circuit of Fig. 2.4, find the value of (a) iL; (b) i1; (c) i2.  

 

Fig. 2.4. 

 

2.2 RC Circuit 

A source-free RC circuit occurs when its dc source is suddenly disconnected. The energy 

already stored in the capacitor is released to the resistors. 

Consider a series combination of a resistor and an initially charged capacitor, as shown in Fig. 

2.5. (The resistor and capacitor may be the equivalent resistance and equivalent capacitance of 

combinations of resistors and capacitors.) Our objective is to determine the circuit response, 

which, for pedagogic reasons, we assume to be the voltage v(t) across the capacitor. Since the 

capacitor is initially charged, we can assume that at time t=0 the initial voltage is 

 

Fig. 2.5 RC circuit. 
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This shows that the voltage response of the RC circuit is an exponential decay of the initial 

voltage. Since the response is due to the initial energy stored and the physical characteristics of 

the circuit and not due to some external voltage or current source, it is called the natural response 

of the circuit. 
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The natural response of a circuit refers to the behavior (in terms of voltages and currents) of the 

circuit itself, with no external sources of excitation. 

The natural response is illustrated graphically in Fig. 2.6. Note that at t=0 we have the correct 

initial condition as in Equations above As t increases, the voltage decreases toward zero. The 

rapidity with whichthe voltage decreases is expressed in terms of the time constant, denoted by 

τ , the lowercase Greek letter tau. 

 

Fig. 2.6 The voltage response of the RC circuit. 

Where 𝜏 = 𝑅𝐶 

The last equation become  

 

Example 2.2  :- In figure 2.7a find Vc , Vx , ix where Vc(0)=15v 

 

Fig. 2.7a    kkkkkkkkkkkkk 

 



36 
 

 

 

Fig. 2.5b    kkkkkkkkkkkkk 
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2.3 The Unit-Step Function:  

The unit step function u(t) is 0 for negative values of t and 1 for positive values of t. 

 

Fig. 2.6 unit step 

In mathematical terms, 

 

The unit step function is undefined at t=0 where it changes abruptly from 0 to 1. It is 

dimensionless, like other mathematical functions such as sine and cosine. Figure 2.7 depicts the 

unit step function. If the abrupt change occurs at t=to (where ) instead of t=0 the unit step 

function becomes 

 

Fig. 2.7 

 

We use the step function to represent an abrupt change in voltage or current, like the changes 

that occur in the circuits of control systems and digital computers. For example, the voltage 

 

may be expressed in terms of the unit step function as 
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2.4 Step Response of an RC Circuit 

When the dc source of an RC circuit is suddenly applied, the voltage or current source can be 

modeled as a step function, and the response is known as a step response. 

The step response of a circuit is its behavior when the excitation is the step function, which may 

be a voltage or a current source. 

The step response is the response of the circuit due to a sudden application of a dc voltage or 

current source. 

Consider the RC circuit in Fig. 2.8(a) which can be replaced by the circuit in Fig. 2.8(b), where 

Vs  is a constant dc voltage source. Again, we select the capacitor voltage as the circuit response 

to be determined. We assume an initial voltage Vo on the capacitor, although this is not necessary 

for the step response. Since the voltage of a capacitor cannot change instantaneously, 

 

  
Fig. 2.8 An RC circuit with voltage step input. 

Where V(0-) is the voltage across the capacitor just before switching and V(0+) is its voltage 

immediately after switching. Applying KCL, we have 

 

where v is the voltage across the capacitor. For t > 0 Equation above becomes 
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Rearranging terms gives 

 

Integrating both sides and introducing the initial conditions, 

 

Taking the exponential of both sides 

 

Thus, 

 

This is known as the complete response (or total response) of the RC circuit to a sudden 

application of a dc voltage source, assuming the capacitor is initially charged. The reason for the 

term “complete” will become evident a little later. Assuming that Vs > V0 a plot of is shown in 

Fig. 2.9. 

 

Fig. 2.9 
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If we assume that the capacitor is uncharged initially, we set V0 =0 in last Equation so that 

 

which can be written alternatively as 

 

This is the complete step response of the RC circuit when the capacitor is initially uncharged. 

The current through the capacitor is obtained from First Equation in this page using We get 

 

  
 

Fig. 2.10 Step response of an RC circuit with initially uncharged capacitor: (a) voltage 

response, (b) current response. 

Figure 2.10 shows the plots of capacitor voltage 𝑣(𝑡) and capacitor current ⅈ(𝑡) 

 

The complete response is composed of two parts, the natural response and the forced response.  

The natural response is a characteristic of the circuit and not of the sources. Its form may be found 

by considering the source-free circuit, and it has an amplitude that depends on both the initial 

amplitude of the source and the initial energy storage.  

The forced response has the characteristics of the forcing function; it is found by pretending that 

all switches were thrown a long time ago. Since we are presently concerned only with switches 

and dc sources, the forced response is merely the solution of a simple dc circuit problem. 
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Another way of looking at the complete response is to break into two components—one 

temporary and the other permanent, i.e., 

 

 

The transient response Vt is temporary; it is the portion of the complete response that decays to 

zero as time approaches infinity. Thus, 

The transient response is the circuit’s temporary response that will die out with time. 

The steady-state response Vss is the portion of the complete response that remains after the 

transient response has died out. Thus, 

The steady-state response is the behavior of the circuit a long time after an external excitation 

is applied. 

Whichever way we look at it, the complete response may be written as 

 

where V(0) is the initial voltage at t=0+ and V(∞) is the final or SteadyState value. Thus, to find 

the step response of an RC circuit requires three things 
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Note that if the switch changes position at time instead of at there is a time delay in the response 

so that Equation becomes 

 

where V(t0) is the initial value at t=t0
+ Keep in mind that Equations applies only to step 

responses, that is, when the input excitation is constant. 

Example 2.3 The switch in Fig. 2.11  has been in position A for a long time. At the switch moves 

to B. Determine 𝑣(𝑡) for  𝑡 > 0 and calculate its value 𝑎𝑡 𝑡 =  1 𝑠 𝑎𝑛𝑑 𝑡 = 4 𝑠. 

 

Fig. 2.11   mmmmmmmm 
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Example 2.4 In Fig. 2.12, the switch has been closed for a long time and is opened at t= 0. Find 

i and v for all time. 

 

 

Fig. 2.12 

  
 

Solution of Example 2.13: (a) for t<0 (b) for t > 0. 
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2.5 Step Response of an RL Circuit 

Consider the RL circuit in Fig. 2.14(a), which may be replaced by the circuit in Fig. 2.14(b). 

Again, our goal is to find the inductor current I as the circuit response. Rather than apply 

Kirchhoff’s laws, we will use the simple technique in last equations. Let the response be the sum 

of the transient response and the steady-state response, 

  
Fig 2.14 An RL circuit with a step input voltage. 

 
We know that the transient response is always a decaying exponential, that is 

 
where A is a constant to be determined. 

The steady-state response is the value of the current a long time after the switch in Fig. 2.14(a) is 

closed. We know that the transient response essentially dies out after five time constants. At that 

time, the inductor becomes a short circuit, and the voltage across it is zero. The entire source 

voltage Vs appears across R. Thus, the steady-state response is 

 

 

We now determine the constant A from the initial value of i. Let I0 be the initial current through 

the inductor, which may come from a source other than Vs Since the current through the inductor 

cannot change instantaneously, 

 

Thus, at 𝑡 = 0 Equation becomes 
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From this, we obtain A as 

 

Substituting for A in Equation we get 

 

This is the complete response of the RL circuit. It is illustrated in Fig. 2.15. The response may 

be written as 

 

 

Fig. 2.15 Total response of the RL circuit with initial inductor current I0. 

where ⅈ(0) and ⅈ(∞) are the initial and final values of ⅈ, respectively. Thus, to find the step 

response of an RL circuit requires three things: 

 

Again, if the switching takes place at time 𝑡 = 𝑡0 instead of 𝑡 = 0 last equation becomes 

 

If I0=0 then  
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This is the step response of the RL circuit with no initial inductor current. The voltage across 

the inductor is obtained from Equation 𝑣 = 𝐿𝑑ⅈ/𝑑𝑡 using We get 

 

Figure 2.16 shows the step responses in Equations 

 
 

Fig. 2.16 Step responses of an RL circuit with no initial inductor current: (a) current response, 

(b) voltage response. 

Example 2.5 Find ⅈ(𝑡)  in the circuit of Fig. 2.17 for Assume that the switch has been closed for 

𝑡 >  0 a long time. 

 

Fig. 2.17 lllllllllll 
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Example 2.6 At 𝑡 =  0 switch 1 in Fig. 2.18 is closed, and switch 2 is closed 4 s later. Find ⅈ(𝑡) 

for 𝑡 >  0. Calculate i for t = 2 s and t = 5 s. 

 

 

Fig. 2.18   hhhhhhhhhh 
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H.W 

1- The switch in Fig. 2.19 has been closed for a long time. It opens at 𝑡 = 0 Find for 

 
Fig. 2.19 

2- Switch S1 in Fig. 2.20  is closed at 𝑡 = 0 and switch S2 is closed at 𝑡 = 2 𝑠 Calculate ⅈ(𝑡) for 

all 𝑡. Find ⅈ(1) 𝑎𝑛𝑑 ⅈ(3) 

 
Fig. 2.20 

3- Find 𝑣(𝑡) for 𝑡 >  0 in the circuit of Fig. 2.21. Assume the switch has been open for a long 

time and is closed at 𝑡 =  0  Calculate 𝑣(𝑡) at 𝑡 =  0.5   

 
Fig. 2.21 

4- The switch in Fig. 2.22 is closed at 𝑡 =  0  Find ⅈ(𝑡)and 𝑣(𝑡)for all time.  

Note that 𝑢(−𝑡)  =  1 𝑓𝑜𝑟 𝑡 < 0 𝑎𝑛𝑑 0 𝑓𝑜𝑟 𝑡 >  0. Also, 𝑢(−𝑡)  = 1 −  𝑢(𝑡). 

 
Fig. 2.22 
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2.6 RLC circuit: 

In this section, we consider more complex circuits, which contain both an inductor and a 

capacitor. The result is a second-order differential equation for any voltage or current of interest. 

Now we need two initial conditions to solve each differential equation.  

Such circuits occur routinely in a wide variety of applications, including oscillators and frequency 

filters. They are also very useful in modelling a number of practical situations, such as automobile 

suspension systems, temperature controllers, and even the response of an airplane to changes in 

elevator and aileron positions. 

Typical examples of second-order circuits are RLC circuits, in which the three kinds of passive 

elements are present. Examples of such circuits are shown in Fig. 2.23(a) and (b). 

 
 

Fig 2.23 RLC circuits 

2.6.1 Free Series RLC Circuit 

An understanding of the natural response of the series RLC circuit is a necessary background 

for future studies in filter design and communications networks. Consider the series RLC circuit 

shown in Fig. 2.24. The circuit is being excited by the energy initially stored in the capacitor 

and inductor. 

The energy is represented by the initial capacitor voltage V0 and initial inductor current I0. 

Thus, at 𝑡 = 0 , 

 

Fig. 2.24 series RLC circuit 

 

(a1) 

(b1)

0 
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Applying KVL around the loop in Fig. 2.24, 

 

To eliminate the integral, we differentiate with respect to t and rearrange terms. We get 

 

This is a second-order differential equation and is the reason for calling the RLC circuits in this 

chapter second-order circuits. Our goal is to solve Eq. (3). To solve such a second-order 

differential equation requires that we have two initial conditions, such as the initial value of i and 

its first derivative or initial values of some i and The initial value of i is given in Eq. (1b). We get 

the initial value of the derivative of i from Eqs. (1a) and (2); that is, 

 

With the two initial conditions in Eqs. (1b) and (4), we can now solve Eq. (3). Our experience in 

the preceding chapter on first-order circuits suggests that the solution is of exponential form. So 

we let 

 

where A and s are constants to be determined. Substituting Eq. (5) into Eq. (3) and carrying out 

the necessary differentiations, we obtain 

 

Since ⅈ = 𝐴𝑒𝑠𝑡 is the assumed solution we are trying to find, only the expression in parentheses 

can be zero: 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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This quadratic equation is known as the characteristic equation of the differential Eq. (3), since 

the roots of the equation dictate the character of i. The two roots of Eq. (7) are 

 

A more compact way of expressing the roots is 

 

Where 

 

The roots S1 and S2 are called natural frequencies, measured in nepers per second (Np/s), because 

they are associated with the natural response of the circuit 𝝎𝟎; is known as the resonant frequency 

or strictly as the undamped natural frequency, expressed in radians per second (rad/s); and α is 

the neper frequency or the damping factor, expressed in nepers per second. In terms of α and 𝝎𝟎 , 

Eq. (7) can be written as 

 

The variables s and 𝝎𝟎 are important quantities we will be discussing throughout the rest of the 

text. The two values of s in Eq. (9) indicate that there are two possible solutions for i, each of 

which is of the form of the assumed solution in Eq. (5); that is, 

 

Since Eq. (3) is a linear equation, any linear combination of the two distinct solutions ⅈ1and ⅈ2 is 

also a solution of Eq. (3). A complete or total solution of Eq. (3) would therefore require a linear 

combination of  ⅈ1and ⅈ2 . Thus, the natural response of the series RLC circuit is 

 

where the constants A1 and A2 are determined from the initial values ⅈ(0) and 𝑑ⅈ(0)/𝑑𝑡 in Eqs. 

(1) and (2). 

(8a) 

(8b) 

(9) 

(10) 

(11) 

(12) 

(13) 
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From Eq. (9), we can infer that there are three types of solutions: 

1. If 𝛼 >  𝜔0 we have the overdamped case. 

2. If 𝛼 =  𝜔0 we have the critically damped case. 

3. If 𝛼 <  𝜔0 we have the underdamped case. 

The response is overdamped when the roots of the circuit’s characteristic equation are unequal 

and real, critically damped when the roots are equal and real, and underdamped when the roots 

are complex. 

We will consider each of these cases separately. 

Overdamped Case 𝜶 >  𝝎𝟎 

From Eqs. (8) and (9), 𝛼 >  𝜔0 implies  𝐶 > 4𝐿/𝑅2  When this happens, both roots S1 and S2 are 

negative and real. The response is 

 

which decays and approaches zero as t increases. Figure 2.25 illustrates a typical overdamped 

response. 

 

Fig. 2.25 overdamped 

Critically Damped Case 𝜶 =  𝝎𝟎 

When 𝛼 =  𝜔0 ,  𝐶 = 4𝐿/𝑅2 and 

 

For this case, Eq. (13) yields 

 

(14) 

(15) 
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where . A3 = A1 + A2 This cannot be the solution, because the two initial conditions cannot be 

satisfied with the single constant A3. What then could be wrong? Our assumption of an 

exponential solution is incorrect for the special case of critical damping. Let us go back to Eq. 

(3). When 𝛼 =  𝜔0 = 𝑅/2𝐿, Eq. (3) becomes 

 
If we let 

 
then Eq. (16) becomes 

 
which is a first-order differential equation with solution 𝑓 = 𝐴1𝑒−𝛼𝑡where is a constant. 

Equation (17) then becomes 

 

This can be written as 

 
Integrating both sides yields 

 
where A2 is another constant. Hence, the natural response of the critically damped circuit is a sum 

of two terms: a negative exponential and a negative exponential multiplied by a linear term, or 

 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 
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A typical critically damped response is shown in Fig. 2.26 In fact, Fig. 2.26 is a sketch of 

ⅈ(𝑡) = 𝑡 𝑒−𝛼𝑡 which reaches a maximum value of 𝑒−1/𝛼 𝑎𝑡 𝑡 = 1/𝛼, one time constant, and 

then decays all the way to zero. 

 

Fig. 2.26 critically damped 

Underdamped Case 𝜶 <  𝝎𝟎 

When 𝛼 <  𝜔0 ,  𝐶 < 4𝐿/𝑅2 The roots may be written as 

 

where 𝑗 = √−1and 𝜔𝑑 = √𝜔0
2 − 𝛼2which is called the damping frequency. Both and are natural 

frequencies because they help determine the natural response; while 𝜔0 is often called the 

undamped natural frequency , 𝜔𝑑  is called the damped natural frequency. The natural response is 

 

Using Euler’s identities, 

 

we get 

 

Replacing constants (A1 + A2 ) and j (A1 - A2 ) with constants B1 and B2 we write 

 

(22a) 

(22b) 

(23) 

(24) 

(25) 

(26) 
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With the presence of sine and cosine functions, it is clear that the natural response for this case is 

exponentially damped and oscillatory in nature. The response has a time constant of 1/ 𝛼 and a 

period 𝑇 =  2𝜋/𝜔𝑑    of Figure 2.27 depicts a typical underdamped response. Figure 8.9 assumes 

for each case that ⅈ(0) = 0 

 

Fig. 2.27 underdamped 

Example 2.7 In Fig. 2.24 , R=40Ω , L= 4 H  and C= 0.25 F Calculate the characteristic roots of 

the circuit. Is the natural response overdamped, underdamped, or critically damped? 
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Example 2.8 Find ⅈ(𝑡) in the circuit of Fig. 2.28. Assume that the circuit has reached steady 

state at 𝑡 = 0−. 

 

Fig. 2.28 

 
 

Fig. 2.29 : The circuit in Fig. 2.28 : (a) for t < 0, (b) for t > 0. 
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2.6.2 Free Parallel RLC Circuit 

Parallel RLC circuits find many practical applications, notably in communications networks and 

filter designs. 

Consider the parallel RLC circuit shown in Fig. 2.30. Assume initial inductor current I0 and initial 

capacitor voltage V0, 

 

Fig. 2.30 parallel RLC circuit 

 

Since the three elements are in parallel, they have the same voltage 𝑣 across them. According to 

passive sign convention, the current is entering each element; that is, the current through each 

element is leaving the top node. Thus, applying KCL at the top node gives 

 

Taking the derivative with respect to t and dividing by C results in 

 

We obtain the characteristic equation by replacing the first derivative by s and the second 

derivative by s2 . By following the same reasoning used in establishing Eqs. (3) through (7), the 

characteristic equation is obtained as 

 

The roots of the characteristic equation are 

      or        

(27a) 

(27b) 

(28) 

(29) 

(30) 

(31) 
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where 

 

The names of these terms remain the same as in the preceding section, as they play the same role 

in the solution. Again, there are three possible solutions, depending on whether 𝛼 >  𝜔0 , 𝛼 =

 𝜔0 or 𝛼 <  𝜔0 

Let us consider these cases separately. 

Overdamped Case 

From Eq. (32), 𝛼 >  𝜔0 when 𝐿 > 4𝑅2𝐶 The roots of the characteristic equation are real and 

negative. The response is 

 

Critically Damped Case 

For 𝛼 =  𝜔0 , 𝐿 = 4𝑅2𝐶 The roots are real and equal so that the response is 

 

Underdamped Case 

When 𝛼 <  𝜔0 , 𝐿 < 4𝑅2𝐶  In this case the roots are complex and may be expressed as 

 

The response is 

 

The constants and in each case can be determined from the initial conditions. We need and The 

first term is known from Eq. (27b). We find the second term by combining Eqs. (27) and (28), as 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 
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The voltage waveforms are similar to those shown in Figure 2.25 , 2.26 2.27 and will depend on 

whether the circuit is overdamped, underdamped, or critically damped. 

Example 2.9 In the parallel circuit of Fig. 2.30, find 𝑣(𝑡) for 𝑡 > 0 assuming 𝑣(0)  = 5𝑣 ,  

ⅈ(0) = 0𝐴  , 𝐿 = 1 𝐻 , 𝐶 = 10𝑚𝐹 Consider these cases: 𝑅 =  1.923 Ω, 𝑅 =  5 Ω, 𝑅 =  6.25 Ω. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(38) 
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Fig. 2.31 responses for three degrees of damping. 
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Example 2.10 Find v(t) for t > 0 in the RLC circuit of Fig. 2.32 

 

Fig. 2.32 
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H.W.  

1- Series RLC circuit has R= 10Ω , L=5 H and C=2 mF find α ,  𝜔0 , S1 and S2 and what type of 

natural response will the circuit have? 

2- The circuit in Fig. 2.33  has reached steady state at 𝑡 = 0− If the make before- break switch 

moves to position b at 𝑡 = 0 calculate ⅈ(𝑡) for 𝑡 > 0 

 

Fig. 2.33 

3- Parallel RLC circuit has 𝑅 =  2Ω , 𝐿 = 0.4 𝐻 𝑎𝑛𝑑 𝐶 = 25 𝑚𝐹 , 𝑣(0) = 0 𝑎𝑛𝑑 ⅈ(0) = 50𝑚𝐴 

Find 𝑣(𝑡) for 𝑡 > 0 

4- Refer to the circuit in Fig. 2.34. Find 𝑣(𝑡) for 𝑡 > 0. 

 

Fig. 2.34 
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2.7 Step Response of a Series RLC Circuit 

As we learned in the preceding chapter, the step response is obtained by the sudden application 

of a dc source. Consider the series RLC circuit shown in Fig. 2.35. Applying KVL around the 

loop for 𝑡 > 0 , 

 

Fig. 2.35 Step voltage applied to a series RLC circuit. 

 

Substituting for i in Eq. (39) and rearranging terms, 

 

which has the same form as Eq. (3). More specifically, the coefficients are the same (and that is 

important in determining the frequency parameters) but the variable is different. (Likewise, see 

Eq. (47).) Hence, the characteristic equation for the series RLC circuit is not affected by the 

presence of the dc source. 

The solution to Eq. (40) has two components: the transient response 𝑣𝑡(𝑡) and the steady-state 

response 𝑣𝑠𝑠(𝑡) that is, 

 

The transient response 𝑣𝑡(𝑡)  is the component of the total response that dies out with time. The 

form of the transient response is the same as the form of the solution obtained in Section 2.3 for 

the source-free circuit, given by Eqs. (14), (21), and (26). Therefore, the transient response 𝑣𝑡(𝑡) 

for the overdamped, underdamped, and critically damped cases are: 

 

(39) 

(40) 

(41) 

(42a) 

(42b) 

(42c) 
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The steady-state response is the final value of 𝑣(𝑡) . In the circuit in Fig. 2.35 , the final value of 

the capacitor voltage is the same as the source voltage Vs . Hence 

 

Thus, the complete solutions for the overdamped, underdamped, and critically damped cases 

are: 

 

Example 2.11  For the circuit in Fig. 2.36, find 𝑣(𝑡) and ⅈ(𝑡) for 𝑡 > 0 . Consider these cases: 

R=5Ω , R=4Ω and R=1Ω . 

 

Fig. 2.36 

 

 

 

 

 

 

 

 

 

 

 

 

(43) 

(44) 



65 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.36 response for three degrees of damping. 
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2.8 Step Response of a Parallel RLC Circuit 

Consider the parallel RLC circuit shown in Fig. 2.37. We want to find ⅈ due to a sudden 

application of a dc current. Applying KCL at the top node for 𝑡 > 0 

 

Fig. 2.37 Parallel RLC circuit with an applied current. 

 

But 

 

Substituting for v in Eq. (46) and dividing by LC, we get 

 

which has the same characteristic equation as Eq. (29). 

The complete solution to Eq. (47) consists of the transient response ⅈ𝑡(𝑡) and the steady-state 

response ⅈ𝑠𝑠(𝑡)that is, 

 

The transient response is the same as what we had in Section 2.4. The steady-state response is 

the final value of ⅈ. In the circuit in Fig. 2.37, the final value of the current through the inductor 

is the same as the source current Thus, 

 

 

(46) 

(47) 

(48) 

(49) 
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Example 2.12  In the circuit of Fig. 2.38, find ⅈ(𝑡) and ⅈ𝑅(𝑡)for 𝑡 >  0. 

 

Fig. 2.38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 
 

H.W  

1- Find ⅈ(𝑡) and 𝑣(𝑡) for 𝑡 > 0  in the circuit of Fig. 2.39. 

 
Fig. 2.39 

2- Having been in position a for a long time, the switch in Fig. 2.40 is moved to position b at 𝑡 =

 0. Find 𝑣(𝑡) and 𝑣𝑅(𝑡) for 𝑡 >  0. 

 
Fig. 2.40 

3- The switch in the circuit of Fig. 2.41 has been in the left position for a long time; it is moved 

to the right at t = 0. Find (a) dv/dt at t = 0+; (b) v at t = 1 ms; (c) t0, the first value of t greater 

than zero at which v = 0. 

 
Fig. 2.41 

4- Determine iL(t) for the circuit of Fig. 2.42, and plot the waveform. 

 

Fig. 2.42 


